Alpha-Lipoic Acid--is a powerful antioxidant that regulates gene expression and preserves hearing during cisplatin therapy
Lester Packer, Ph.D. (scientist and professor at the Berkeley Laboratory of the University of California), refers to lipoic acid as the most powerful of all the antioxidants; in fact, Packer says that if he were to invent an ideal antioxidant, it would closely resemble lipoic acid (Packer et al. 1999). Alpha-lipoic acid claims anticarcinogenic credits because it independently scavenges free radicals, including the hydroxyl radical (a free radical involved in all stages of the cancer process and linked to an increase in the likelihood of metastasis).
Lipoic acid increases the efficacy of other antioxidants, regenerating vitamins C and E, coenzyme Q10, and glutathione for continued service. In fact, lipoic acid boosts the levels of glutathione by 30-70%, particularly in the lungs, liver, and kidney cells of laboratory animals injected with the antioxidant. In addition, glutathione tempers the synthesis of damaging cytokines and adhesion molecules by influencing the activity of nuclear factor kappa B (NF-kB), a transcription factor (Exner et al. 2000).
Lipoic acid can down-regulate genes that accelerate cancer without inducing toxicity. So responsive are cancer cells that laboratory-induced cancers literally soak up lipoic acid, a saturation that increased the lifespan of rats with aggressive cancer by 25% (Karpov et al. 1977).
Alpha-lipoic acid was preferentially toxic to leukemia cells lines (Jurkat and CCRF-CEM cells). The selective toxicity of lipoic acid to Jurkat cells was credited (in part) to the antioxidant’s ability to induce apoptosis. Lipoic acid activated (by nearly 100%) an enzyme (caspase) that kills leukemia cells (Pack et al. 2002). Other researchers showed that lipoic acid acted as a potentiator, amplifying the anti-leukemic effects of vitamin D. It is speculated that lipoic acid delivers much of its advantage by inhibiting NF-kB and the appearance of damaging cytokines (Sokoloski et al. 1997; Zhang et al. 2001).
Finding that lipoic acid can differentiate between normal and leukemic cells charts new courses in treatment strategies to slow or overcome the disease (Packer et al. 1999).
As with all antioxidants, the appropriateness of using lipoic acid with chemotherapy arises. Animal studies indicate that alpha-lipoic acid decreased side effects associated with cyclophosphamide and vincristine (chemotherapeutic agents) but did not hamper drug effectiveness (Berger et al. 1983). More recently, a combination of alpha-lipoic acid and doxorubicin resulted in a marginally significant increase in survival of leukemic mice (Dovinova et al. 1999).
Nonetheless, the definitive answer regarding coupling antioxidants with conventional cancer therapy is complex. Factors, such as type of malignancy, as well as the nature of the cytotoxic chemical and even the time of day the agents are administered, appear to influence outcome some.
I GIVE LUCY A 90# LAB Alpha-Lipoic Acid in her AM meal. One 300mg cap.